翻訳と辞書
Words near each other
・ Ion Halippa
・ Ion Hamilton Benn
・ Ion Hamilton, 1st Baron HolmPatrick
・ Ion Harbuz
・ Ion Hebedeanu
・ Ion Heliade Rădulescu
・ Ion Hobana
・ Ion Horațiu Crișan
・ Ion I. Agârbiceanu
・ Ion I. C. Brătianu
・ Ion I. Câmpineanu
・ Ion Idriess
・ ION iED01
・ Ion Ignatiuc
・ Ion Iliescu
Ion implantation
・ Ion Inculeț
・ Ion Ioanid
・ Ion Ionescu
・ Ion Ionescu (footballer born 1936)
・ Ion Ionescu de la Brad
・ Ion Ionescu de la Brad University of Agricultural Sciences and Veterinary Medicine of Iași
・ Ion Ioniță
・ Ion Ioniță (cyclist)
・ Ion Ioniță (ice hockey)
・ Ion Ionuț Luțu
・ Ion Iovcev
・ Ion Iovescu
・ Ion Irimescu
・ Ion Ivanovici


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Ion implantation : ウィキペディア英語版
Ion implantation

Ion implantation is a materials engineering process by which ions of a material are accelerated in an electrical field and impacted into a solid. This process is used to change the physical, chemical, or electrical properties of the solid. Ion implantation is used in semiconductor device fabrication and in metal finishing, as well as various applications in materials science research. The ions alter the elemental composition of the target (if the ions differ in composition from the target), stopping in the target and staying there. They also cause many chemical and physical changes in the target by transferring their energy and momentum to the electrons and atomic nuclei of the target material. This causes a structural change, in that the crystal structure of the target can be damaged or even destroyed by the energetic collision cascades. Because the ions have masses comparable to those of the target atoms, they knock the target atoms out of place more than electron beams do. If the ion energy is sufficiently high (usually tens of MeV) to overcome the coulomb barrier, there can even be a small amount of nuclear transmutation.
== General principle ==

Ion implantation equipment typically consists of an ion source, where ions of the desired element are produced, an
accelerator, where the ions are electrostatically accelerated to a high energy, and a target chamber, where the ions impinge on a target, which is the material to be implanted. Thus ion implantation is a special case of
particle radiation.
Each ion is typically a single atom or molecule, and thus the actual amount of material implanted in the target is the integral over time of the ion current. This amount is called the dose. The currents supplied by implanters are typically small (microamperes), and thus the dose which can be implanted in a reasonable amount of time is small. Therefore, ion implantation finds application in cases where the amount of chemical change required is small.
Typical ion energies are in the range of 10 to 500 keV (1,600 to 80,000 aJ). Energies in the range 1 to 10 keV (160 to 1,600 aJ) can be used, but result in a penetration of only a few nanometers or less. Energies lower than this result in very little damage to the target, and fall under the designation ion beam deposition. Higher energies can also be used: accelerators capable of 5 MeV (800,000 aJ) are common. However, there is often great structural damage to the target, and because the depth distribution is broad (Bragg peak), the net composition change at any point in the target will be small.
The energy of the ions, as well as the ion species and the composition of the target determine the depth of penetration of the ions in the solid: A monoenergetic ion beam will generally have a broad depth distribution. The average penetration depth is called the range of the ions. Under typical circumstances ion ranges will be between 10 nanometers and 1 micrometer. Thus, ion implantation is especially useful in cases where the chemical or structural change is desired to be near the surface of the target. Ions gradually lose their energy as they travel through the solid, both from occasional collisions with target atoms (which cause abrupt energy transfers) and from a mild drag from overlap of electron orbitals, which is a continuous process. The loss of ion energy in the target is called stopping and can be simulated with the binary collision approximation method.
Accelerator systems for ion implantation are generally classified into medium current (ion beam currents between 10 μA and ~2 mA), high current (ion beam currents up to ~30 mA), high energy (ion energies above 200 keV and up to 10 MeV), and very high dose (efficient implant of dose greater than 1016 ions/cm2).
All varieties of ion implantation beamline designs contain certain general groups of functional components (see image). The first major segment of an ion beamline includes a device known as an ion source to generate the ion species. The source is closely coupled to biased electrodes for extraction of the ions into the beamline and most often to some means of selecting a particular ion species for transport into the main accelerator section. The "mass" selection is often accompanied by passage of the extracted ion beam through a magnetic field region with an exit path restricted by blocking apertures, or "slits", that allow only ions with a specific value of the product of mass and velocity/charge to continue down the beamline. If the target surface is larger than the ion beam diameter and a uniform distribution of implanted dose is desired over the target surface, then some combination of beam scanning and wafer motion is used. Finally, the implanted surface is coupled with some method for collecting the accumulated charge of the implanted ions so that the delivered dose can be measured in a continuous fashion and the implant process stopped at the desired dose level.〔 〕

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Ion implantation」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.